Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review

Melkamu Hinsermu*

Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Center, Ethiopia.

*Corresponding Author: Melkamu Hinsermu, Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Center, Ethiopia, Email- melkamuhinsermu12@gmail.com

ABSTRACT
Snap bean (Phaseolus vulgaris L.) is the most important vegetable crop for export and local market. Even though snap bean is many important, the yield haven been obtained is low mainly due to decline soil fertility and irrigation system problems. Now a day’s Ethiopian soils not only limiting phosphorus and nitrogen nutrients, but also sulfur is a major problem. Water stress that reduced yield and pod quality of snap bean. Irrigation schedule is very crucial to make the most efficient use of irrigation system to avoid excessive water and shortage problem. Snap bean required high amount of nitrogen fertilizer, due to its weak fixation capacity of atmospheric nitrogen. Application of nitrogen at 150 kg N ha⁻¹ increased growth and pod yield parameters snap bean. The optimum rate of phosphorus at 21 kg P ha⁻¹ was applied at the time of seeding in the form of triple super phosphate for snap bean production in Ethiopia. Application of sulfur at 30 kg S ha⁻¹ increased nitrogen, phosphorus and sulfur nutrient availability. Today there is lack of information on snap bean production in Ethiopia, especially NPS fertilizers application and under different irrigation system. Snap bean producers needs optimum rate of NPS fertilizers application and with different irrigation system, so research institutions and higher learning educations generate information to snap bean producers in Ethiopia at site-specific.

Keywords: Fertilizers, Irrigation System, Snap bean, Yield

INTRODUCTION
Snap bean (Phaseolus vulgaris L.) comprises a group of common bean that has been selected for succulent pods with reduced fiber primarily grown for its young edible and fleshly pods (Myer and Baggett, 1999; Getachew, 2006). It is the most important vegetable crop which is rich in protein, carbohydrates, calcium, vitamins and amino acids. It is also the most important vegetables crop have been exported from developing countries and several African countries have focused on exporting snap beans to high-value European markets (Ghonimy et al., 2009).

In Ethiopia, the production of snap beans started by large commercial farmers in the early 1970s. It is mainly produced in upper awash and the lake region in eastern Shoa (EHPEA, 2011). Its’ production in Ethiopia has increased from time to time both for export and local markets (Hussein et al., 2015). It is the most important export vegetable crop extensively produced for export with the highest share (94%) among all vegetables (Lemma et al., 2006; Lemma, 2011). Globally, the yield for snap bean ranges between 8 and 10 t ha⁻¹, with high yields of more than 14 t ha⁻¹ being recorded in China, USA and Latin America (CIAT, 2006). The average pod yield in smallholder farms in eastern and central Africa is low ranging between 4 and 8 t ha⁻¹ (Kimani et al., 2004) due to poor soil fertility and inadequate moisture (Amare and Haile, 1989). Water stress problems can reduce pod yield about 20% when water stress persisted for 15 days before blooming, 18-22 days during blooming, or 15 days before ripening. Water stress cause high fiber content in the green pods (Mack et al., 1982). Scheduling water application is very critical to make the most efficient use of irrigation system to avoid excessive water and shortage (Hakan et al., 2008; Mohamed et al., 2012). Other factor declining soil fertility is a major problem in snap bean production areas in eastern Africa including Ethiopia. Previously, Ethiopian small holder farmers were limited to DAP and urea, fertilizers that only delivered N and P nutrients (Khalid, 2013). Farmers and farmer corporative union have already requested that the government make the new blended fertilizers more available.
Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review

(MOA, 2014). Soil tests show that many croplands lack of other essential nutrients such as sulfur, boron, potassium, zinc, and copper (ATA, 2015).

The N fertilizer requirement of snap bean is high, due to its weak fixation capacity of atmospheric N compared to other beans (Feleafel and Mirdad, 2014). In the tropics region, the amount of available P in soils is largely insufficient to meet the demand of beans and thus, P deficiency is prevalent in bean crops (Azmera and Pellegrino, 2017). Snap bean has high demand of sulfur due to production of several protein containing materials and fatty acids. Now, day’s S deficiency is becoming widespread throughout the world due to the use of sulfur-free fertilizers, intensive cropping, and use of high-yielding varieties (Alemu et al., 2016). Thus, this review was carried out with the following objectives:

- To review the effect NPS fertilizers application on growth and yields of snap bean.
- To review the effect of different irrigation system on growth and yield of snap bean.

Effect of NPS Fertilizers Application on Growth and Yield of Snap Bean

Snap Bean Production

Suitable production areas of snap bean in Ethiopia have been indicated as the areas with altitude between 1000-2100 m.a.s.l. Mean maximum and minimum temperature of less than 32°C and greater than 10°C, respectively with a rainfall ranging from 350 to 700 mm well distributed over 70-90 days (Amare and Haile, 1989). It is grow best in well-drained soils high in organic matter with pH 5.5 to 6.5. They are sensitive to cold and even a slight frost can cause damage. Its require a continuous supply of moisture, especially during pod set and pod development (Michael and Orzolek, 2002).

Effect of Nitrogen on Growth and Yield of Snap Bean

Nitrogen requirement of snap bean is high due to lack of NOD genes, hence it does not have effective nodules and this makes them poor in symbiotic nitrogen fixing (Kushwaha, 1994). According to Andrea et al. (2008) stated that N application increased the vegetative growth, fresh and dry weight pods, reproductive parts, and improves pod quality, but the highest N doses delayed the ripening of snap bean. As N levels, increases from 0 to 150 kg ha⁻¹ the growth and yield attributing of snap bean parameters were increased. Application of 100 kg·N·ha⁻¹ increased pod yield by 42 and 17% as compared to the control and rhizobial inoculation, respectively (Table 1) (Hussein et al., 2015).

According to Tesfaye (2017) showed that application of 92/69 N P₂O₅ kg ha⁻¹ gave the highest pod yield (Figure 1). The mineral N in the soil is mainly nitrate (NO₃⁻) and to a lesser extent ammonium (NH₄⁺) (Kamanu et al., 2012). Nitrogen deficiency results in stunted, reduction yield and chlorotic leaves in snap bean (Feleafel and Mirdad, 2014).

![Figure1. Mean pod yield of snap bean as affected by different rates of fertilizer application](source: Tesfaye, 2017)
Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review

Table 1. Pod marketable yield, length, diameter, titratable acidity and total soluble solids (TSS) of snap bean affected by nitrogen treatment and cultivars.

<table>
<thead>
<tr>
<th>N. Treatment</th>
<th>Marketable yield (t/ha)</th>
<th>Pod length (mm)</th>
<th>Pod diameter (mm)</th>
<th>Titratable Acidity (%)</th>
<th>TSS (%Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kg N ha^{-1}</td>
<td>20.54^a</td>
<td>125.0</td>
<td>7.56</td>
<td>0.0769^a</td>
<td>5.54</td>
</tr>
<tr>
<td>Rhizobium etli (HB 429)</td>
<td>16.92b</td>
<td>122.0</td>
<td>7.49</td>
<td>0.0747^a</td>
<td>5.50</td>
</tr>
<tr>
<td>Zero N</td>
<td>14.39^c</td>
<td>120.2</td>
<td>7.38</td>
<td>0.0701^b</td>
<td>5.46</td>
</tr>
<tr>
<td>Cultivar Andante</td>
<td>11.70c</td>
<td>106.4^c</td>
<td>6.01^c</td>
<td>0.0765^c</td>
<td>5.44^c</td>
</tr>
<tr>
<td>Boston</td>
<td>17.94^b</td>
<td>123.1^bc</td>
<td>7.11^d</td>
<td>0.0768^b</td>
<td>5.41^b</td>
</tr>
<tr>
<td>Contender Blue</td>
<td>16.94^b</td>
<td>112.8^d</td>
<td>7.38^d</td>
<td>0.0747^ab</td>
<td>5.47^ab</td>
</tr>
<tr>
<td>Lomami</td>
<td>18.14^ab</td>
<td>122.7^c</td>
<td>7.44^d</td>
<td>0.0775^c</td>
<td>5.51^d</td>
</tr>
<tr>
<td>Melkassa 1</td>
<td>20.60^b</td>
<td>125.8^bc</td>
<td>8.68^c</td>
<td>0.0668^c</td>
<td>5.49^ab</td>
</tr>
<tr>
<td>Melkassa 3</td>
<td>16.95^b</td>
<td>133.8^e</td>
<td>8.32^b</td>
<td>0.0726^{b,c}</td>
<td>5.56^c</td>
</tr>
<tr>
<td>Paulista</td>
<td>17.98^b</td>
<td>126.5^bc</td>
<td>7.36^d</td>
<td>0.0700^{b,c}</td>
<td>5.57^a</td>
</tr>
<tr>
<td>Volta</td>
<td>18.00^b</td>
<td>128.1^b</td>
<td>7.48^c</td>
<td>0.0763^e</td>
<td>5.56^c</td>
</tr>
</tbody>
</table>

Means followed by the different letters in a treatment grouping column differ significantly based on LSD, P<0.05.

Source: Hussein et al., 2015

Effect of Phosphorus on Growth and Yield of Snap Bean

Phosphorus plays a vital role in protein synthesis, photosynthesis, respiration, energy reactions, genetic transfer, cell division and development of new tissue (Raghothama and Karthikeyan, 2005; Ali et al., 2013).

It is also essential as a component of structure of DNA, RNA, ATP, ADP, NADPH, which act on growth and development of vegetative and generative organs: flower, fruit and pods (Yadav et al., 2014). Plants absorb P mostly in soluble (H2PO4− and HPO4−2) forms (Raghothama and Karthikeyan, 2005). The phosphate fertilization of soils has always been important, because it fixed as water insoluble Fe and Al phosphates in acidic soils or Ca and Mg phosphate in alkaline soils (Singh and Kapoor, 1994).

According to Rafat and Sharifi (2015) revealed that application of P at 50 kg P ha−1 increased plant height, pod length, pods number plant−1 and pod yield (Table 2).

Snap beans applied 100 kg P ha−1 produced 71% greater pod yield than controls (Faegheh and Hashem, 2015). The recommended rate of P 21 kg P ha−1 was applied at the time of seeding in the form of TSP for snap bean production in Ethiopia (Hussein et al., 2015).

Table 2. Effect of phosphorus fertilizers on growth, yield and yield components

<table>
<thead>
<tr>
<th>P (kg ha^{-1})</th>
<th>PH(cm)</th>
<th>PL(cm)</th>
<th>NPP</th>
<th>PY(kg ha^{-1})</th>
<th>BY (kg ha^{-1})</th>
<th>HI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.67c</td>
<td>14.30</td>
<td>17.00d</td>
<td>3833.33c</td>
<td>6760.00c</td>
<td>56.71b</td>
</tr>
<tr>
<td>25</td>
<td>29.00b</td>
<td>15.67</td>
<td>19.00b</td>
<td>4043.33b</td>
<td>6946.67a</td>
<td>58.21b</td>
</tr>
<tr>
<td>50</td>
<td>33.00a</td>
<td>18.37</td>
<td>21.00a</td>
<td>4310.00a</td>
<td>6920.00ab</td>
<td>62.19a</td>
</tr>
<tr>
<td>75</td>
<td>30.67a</td>
<td>16.17</td>
<td>20.00a</td>
<td>4303.33a</td>
<td>6823.33bc</td>
<td>63.17a</td>
</tr>
<tr>
<td>100</td>
<td>27.67b</td>
<td>15.17</td>
<td>17.67c</td>
<td>3923.33bc</td>
<td>6300.00d</td>
<td>62.29a</td>
</tr>
<tr>
<td>LSD(5%)</td>
<td>3.78</td>
<td>2.61</td>
<td>1.85</td>
<td>147.2</td>
<td>100.55</td>
<td>2.06</td>
</tr>
</tbody>
</table>

The columns having common letter(s) do not differ significantly at 5% level of significance P = Phosphorus fertilizers. PH Plant height, PL = Pod length, NPP = Number of pods per plant, PY = Pod yield, BY = Biological yield, HI = Harvest index

Source: (Rafat and Sharifi, 2015)

Effect of Sulfur on Growth and Yield of Snap Bean

Sulfur is one of the essential nutrients for plant growth with crop requirement similar to phosphorus. Its’ serves important structural, regulatory and catalytic functions in the context of proteins, and as a major cellular redox buffer in the form of the tri-peptide glutathione and certain proteins such as thioredoxin, glutaredoxin and protein disulfide isomerase. Application of sulfur at 45 kg S ha−1 increased number of fresh and dry nodule weight and nodules plant−1 (Figure 2) and the above table will be shown the sulfur on growth and yield of snap bean.
Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review

Figure 2. The effect of sulfur application on growth and yield of snap bean (Var. Contender)

Source: Mumtaz et al., 2014

Application of sulfur from 0 to 30 kg S ha⁻¹ increased N, P, K, S, and B by 6.43, 22.22, 26.92, 18.30 and 46.53 in pods, respectively (Mumtaz et al., 2014) (Figure 3).

Application of gypsum at the rate of 60 Kg ha⁻¹ produced significantly higher pod length (Singh and Aggarwal, 1998). Although the dry weight of nodules at higher levels of S showed a tendency to increase, but this was not to the significantly beyond 20 kg S ha⁻¹ (Ganesh hamurthy and Reddy, 2000). The available form of sulfur in plant is sulfate (SO₄⁻²) (Rob et al., 2013).

Sulfur is immobile in plants, does not readily move from old to new growth, leads chlorosis of younger leaves and at later stages; leaves show necrotic symptoms and die (Khan and Mazid, 2011).

Figure 3. The effect of sulfur fertilizer on yield and yield attributing characters of snap bean

Source: Mumtaz et al., 2014

Effect of Irrigation System on Growth and Yield of Snap Bean

According to FAO (2002) declared that to choose an irrigation method, the farmer must know the advantages and disadvantages of the various methods. The suitability of the various irrigation methods, i.e. surface and pressurized irrigation depends mainly on the following factors: natural conditions, type of crop, type of technology, previous experience with irrigation, required labor inputs, costs and benefits.

Furrow Irrigation

Traditionally, farmers in the central rift valley of Ethiopia have been using the most conventional surface irrigation system; most commonly furrow irrigation system (Abdulaziz, 2015). This method is best suited to deep, moderately permeable soils and uniform relatively flat slopes. It requires smaller initial investment compared to drip irrigation systems (Michael, 1997). Furrows provide better on-farm water management flexibility under many surface...
irrigation conditions. The discharge per unit width of the field substantially reduced and topographical variations can be more severe (Walker, 1989).

Table 3. Effect of different irrigation systems and irrigation regimes on vegetative growth characters of beans

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Growth characters</th>
<th>Dry weight (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PH (cm)</td>
<td>BNP</td>
</tr>
<tr>
<td>SD</td>
<td>46.89a</td>
<td>8.81a</td>
</tr>
<tr>
<td>SSD</td>
<td>47.99a</td>
<td>8.38b</td>
</tr>
<tr>
<td>GP</td>
<td>46.33a</td>
<td>8.13c</td>
</tr>
<tr>
<td>FI</td>
<td>42.72b</td>
<td>8.09c</td>
</tr>
<tr>
<td>100% ETc</td>
<td>47.49a</td>
<td>8.44a</td>
</tr>
<tr>
<td>80% ETc</td>
<td>46.08b</td>
<td>8.33ab</td>
</tr>
<tr>
<td>60% ETc</td>
<td>44.16c</td>
<td>8.30b</td>
</tr>
</tbody>
</table>

PH: Plant height, BNP: Branches no per plant, LNP: Leaves per plant, PNP: Pods per plant, LA: Leave area, SD: Surface drip, SSD: subsurface drip, GP: gated pipes, FI: furrow irrigation

Source: El-Noemani et al., 2010

Drip Irrigation

Drip irrigation is an irrigation method that saves water and fertilizer by allowing water to drip slowly to the roots of plants, either onto the soil surface or directly onto the root zone, through a network of valves, pipes, tubing, and emitters (Sabreen et al., 2014).

Compared to sprinkler and furrow irrigation methods (with efficiencies of 60-70% in high management systems), drip irrigation can achieve 90-95% efficiency (Isiya, 2001). Its’ allows small, but frequent application of water with minimum losses (Taha et al., 2011). Drip irrigation use in adverse factors, low hazards, and conservation of proper soil structure, possible control of pests and weeds and decreasing the adverse effect of salinity.

However, the disadvantages of this system include increases in capital expenditure, incidents of orifices clogging, incidents of salinity build-up and need for technical handling (Charles, 2007). Snap bean pod diameter was increased with increasing irrigation level to 100% pan (Abdel-Mawgoud, 2006). The highest values number of branches, number of leaves, leaves area and leaf dry weight were recorded at surface followed by sub-surface drip irrigation (Table3)(El-Noemani et al., 2010).

SUMMARY AND CONCLUSIONS

Snap bean is one of the most important vegetable crops both for export and local market, but the yield is low due to two key abiotic constraints are low soil fertility and water stress.

Water stress during the blossom pod set period can cause blossom and pods to drop; resulting to poor pod quality and reduced yield. Now a day’s soil tests show that cropland lacks not only N and P, but also other essential nutrients such as sulfur nutrient.

As N levels increases from control to 150 kg N ha-1 the growth and yield attributing of snap beans parameters were increased. As P fertilized applied at 21 kg P ha-1 gave higher pod yields. The highest pod yield obtained by application of 30 kg S ha-1, which might be due to the cumulative favorable effect of higher number of branches and pods plant-1 Generally, today there is lack of information on snap bean production in Ethiopia, especially NPS fertilizers application and under different irrigation system, so research institution and higher learning education generate information to snap bean producers at site-specific.

REFERENCES

leaves and seeds of bean (Phaseolus vulgaris L). Turkish Journal of Field Crops, 18(1), 73-77.

Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review

Citation: Melkamu Hinsermu. “Effect of NPS Fertilizers Application and Irrigation System on Growth and Yield of Snap Bean (Phaseolus Vulgaris L): A Review”, International Journal of Research in Agriculture and Forestry, 6(6), 2019, pp 11-17

Copyright: ©2019 Melkamu Hinsermu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.